

Effect of Double-Ruler EMBr on Transient Mold Flow with LES Modeling and Scaling Laws

Ramnik Singh (MSME Student)

Work performed under NSF Grant CMMI 11-30882

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Acknowledgments

- National Science Foundation Grant CMMI-11-30882
- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- Mr. Jonathan Powers and Mr. Thomas Henry, Severstal, Dearborn, MI.

Outline

Previous work with CUFLOW

- validated with measurements in a scaled caster in presence of conducting-side walls and ruler-EMBr
- used to understand the effects of wall conductivity in detail.

These results are in 2012 CCC annual meeting and reports

Recent findings:

University of Illinois at Urbana-Champaign

Part I

• Evaluate scale-up criteria from a scaled physical model to the real caster, including presence of applied magnetic field.

Metals Processing Simulation Lab

Ramnik Singh

3

Part II

- Investigate transient turbulent flow in a real commercial caster with / without double-ruler EMBr field;
- validate with nail board measurements.

Overview: Governing equations for Incompressible MHD flow for low magnetic Reynolds number(Re _M)				
Fluid Flow Equations				
1. Mass conservation	$\frac{\partial v_j}{\partial x_j} = 0$			
2. Momentum conservation	$\frac{\partial v_i}{\partial t} + \frac{\partial v_i v_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p^*}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\left(v_0 + v_{sgs} \right) \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) \right) + \frac{1}{\rho} F_i$			
MHD Equations- Electric pot	ential method			
3. Charge conservation	$\nabla \cdot \vec{J} = 0$			
4. Current density (Derived using Ohm's law with assumption that Re _M <<1 for liquid metal flows)	$\vec{J} = \sigma \big(-\nabla \varphi + \vec{v} \times \vec{B} \big)$			
5. Poisson equation for electric potential (with variable conductivity)	$\nabla \cdot \sigma \nabla \varphi = \nabla \cdot \sigma (\vec{v} \times \vec{B})$			
6. Lorentz force	$\vec{F} = \vec{J} \times \vec{B}$			
University of Illinois at Urbana-Champaign	Metals Processing Simulation Lab Ramnik Singh 4			

Details of CUFLOW Model

- LES with in-house model, CUFLOW developed by P. Vanka.
- Graphic Processing Unit(GPU) used to perform faster computations.
- Based on Finite Volume Method (FVM).
- Adams-Bashforth scheme applied for time integration.
- Second order central differencing scheme used in space.
- Pressure Poisson and electric Poisson equations solved using a geometric multigrid method.
- Wall-Adapting Local Eddy-viscosity (WALE) and Coherent Structure Model (CSM) sub-grid scale models used.
- Previously validated in several non-magnetic and magnetic flows (Shinn et al. 2013, Chaudhary et al. 2010,2012)

Computational Domains and Boundary Conditions

	ColnSn Model	Real Castor			- Velocity Inle Boundary
	GainSh Model	Real Caster			Free-Slin
Number of mesh points	7.6 million	8.8 million			Boundary
Mold width	140mm	840mm			100
Mold thickness	35mm	210mm			
Mold length	330mm	1980mm		Y-T-X	
Domain length	330mm	3200mm			
Nozzle port dimensions($width \times height$)	8mm×18mm	48mm×108mm			
Nozzle bore diameter(inner outer)	10mm 15mm	60mm 90mm		z	
SEN submergence depth (liquid surface	72mm	432mm			
to top of port)					
Thickness of shell on the wide faces	0.5mm	$s(mm) = 2.75\sqrt{t(s)}$	Solid-Liquid		
Thickness of shell on the narrow faces	0mm	$s(mm) = 2.75\sqrt{t(s)}$	Interface		
Velocity Inlet Boundary:	$V_z(r) = V_z^{ce}$	$nterline\left(1-\frac{r}{R}\right)^{\frac{1}{7}}$			
Convective Boundary Outlet	$\vdots \frac{\partial u_i}{\partial t} + U_{con}$	vective $\frac{\partial u_i}{\partial n} = 0$	Convective Outlet Boundary	-	

University of Illinois at Urbana-Champaign

Casting Consortium

Ramnik Singh

8

Scaleup Criteria

Froude Number =	$\frac{V}{\sqrt{Lg}} = \frac{ine}{gravit}$	rtial force tational force	Stuart Numbe	$er = \frac{B^2 L \sigma}{\rho V} = \frac{H a^2}{Re}$	$=\frac{electromagneti}{inertial for}$	c force cce
Where, <i>V</i> is characteristic velocity (m/s) B is maximum applied field strength ρ is material density (kg/m ³) <i>Re</i> is Reynolds number		<i>L</i> is characteristic length (m) σ is conductivity of material (1/ Ω m) <i>Ha</i> is Hartmann number				
	Stuart Number (based on Mold Width)	Froude Number (based on Mold Width)	Mean Inlet Velocity(m/s)	Casting Speed (m/min)	Magnetic Field Strength B _{max} (mT)	Case (MTB)
GalnSn model (1/6 th Scaled Model)	4.84	1.19	1.4	1.35	310	3
Froude Number Similarity	2.49	1.19	3.43	3.3	310	
Stuart Number Similarity	4.84	0.59	1.7	1.64	310	5
Maintaining both Simultaneously	4.84	1.19	3.43	3.3	440	
University of Illinois at Urb	oana-Champaign	• Metals	Processing Simulation	Lab •	Ramnik Singh	• 9

asting

Evaluation of Stuart Number Scaling

 Velocity field in the GaInSn model is scaled to predicted velocities in the real caster using the relation

Physical Model Scaling Method with Surface Level Fluctuations

Part I- Conclusions

- The Stuart number similarity criterion enables a close match of both the time-averaged mold flow pattern (qualitative) and velocities (quantitative).
- Simply scaling the surface-level fluctuations using the geometric scale factor (=6) resulted in an overprediction.
- The surface-level fluctuations match well when scaled using a scaling factor based on the ratio of the Froude numbers.
- This new scaling method avoids the need to maintain both the Stuart number and the Froude number simultaneously when choosing the operating conditions for a scaled model caster with EMBr.

Details of the Commercial Caster

		Operating Condition	ons
		Mold width (L)	1706.0 <i>mm</i>
[117]		Mold thickness	203.2 mm
U	Vpper Tundish Nozzle (UTN)	Nozzle port diameter	75.0 <i>mm</i>
	Slide Cete 36.5	Nozzle bore diameter (d) (inner outer)	70 mm 130 mn
40-1		Nozzle port angle	25.0 deg
		Casting speed	1.4 m/min
i i	130	Slide gate orientation	90.0 deg
P1*(-389.0.10) C P1(389.0.10) P2(80	03.0.10)	Slide gate opening fraction (f_A)	41.48%
	Submergence	SEN submergence depth	220 mm
75	Depth	(liquid surface to top of port)	
25 deg port		Total volume flow rate	8.1 <i>L</i> /s
P3*(-400,0,400)70 P3(400,0,400)	25.85 -111 - 70	Mass flow rate	3.4 tonne/min
		Bulk velocity at UTN inlet	0.752 m/s
		Bulk velocity at SEN cross section (U)	2.1 m/s
	Double-Ruler Magnetic Field	Argon gas injection (volume fraction)	4.37% (ignored)
	Configuration Solidified Shall	Shell Profile	
	Solutied Sich	approximated by	
1706		s(mm)= $k\sqrt{t(sec)}$	
(a) Front- View	All dimensions in mm (b) Side-View	k= 2.75 mm/√ <i>sec</i>	
		lwasaki et al. 2012	
University of Illinois at Urbana-Champaign	Metals Processing Simula	ation Lab • Ramnik Sing	n • 15

Computational Domain, Mesh and Boundary Conditions

Thickness of shell (uniform around perimeter)	$s(mm) = 2.75\sqrt{t(s)}$	Velocity Inlet
Viscosity (steel)	0.86 x 10 ⁻⁶ m ² /s	Upper Tundish Nozzle
Fluid density (steel)	7000.0 kg/m ³	l 🦷
Conductivity of liquid (σ_{liquid})	0.714 x 10 ⁶ 1/Ωm	Slide Gate {
Conductivity of walls (σ_{wall})	0.787 x 10 ⁶ 1/Ωm	
Reynolds number, (Re=Ud _{inner} / ν , based on nozzle diameter)	171,000	X No-Slip Boundary
Reynolds number, (Re=UL/ ν , based on mold width)	41,66,000	
Hartmann number (Ha= $BL\sqrt{\sigma/\rho\nu}$, based on mold width)	5,202	z
Froude number (Fr= U/\sqrt{gL}), based on mold width)	0.513	
Stuart number (N= $B_0^2 L \sigma / \rho U$), based on mold width)	6.5	Solid-Liquid Interface
	1. No-EMBr	
Cases	2. With EMBr	
Total Number of cells in		
the mesh= 5.5 million		
		Convective Outlet
		Boundary

Surface level Profile and Surface Level Fluctuations

Vertical Velocity Below Jet Region

28

Top Surface Level Profile

Part II- Conclusions

- The measured surface flow directions, velocity profile, and the free surface level profile all agree reasonably well with the computations.
- Without EMBr, upper recirculation regions have high velocities causing:
 - large variations in surface level profile, (up to ~22mm),
 - large surface level fluctuations (~ +/- 12mm)
 - high surface velocities (up to ~0.6m/s).
- With EMBr, jet is deflected downwards, which
 - · weakens upper recirculation regions,
 - flatter surface level profile (up to ~1.5mm),
 - extremely small level fluctuations (< +/- 1mm)
 - lower surface velocities (<0.1m/s).
- The application of this EMBr field also damps the unbalanced flow behavior and makes flow much more stable.

- Conduct plant trials to investigate steel quality to confirm flow issues of greatest importance is excessive surface flow
- Use computational models to predict behavior of EMBr before installing
- Measure magnetic field to check uniformity across mold width. (If field strength weakens towards NF, may need higher EMBr strength)
- May also need to adjust EMBr strength according to submergence depth and casting speed / mold width (in addition to nozzle geometry)
- For caster studied here: Use double-ruler EMBr (FC-mold) with half strength on upper field
 - · This should slow down and stabilize surface flow
 - · And lessen particle entrainment deep into caster

References

32

- K. Timmel, S. Eckert, G. Gerbeth, Experimental investigation of the flow in a continuous-casting mold under the influence of a transverse, direct current magnetic field, Metall. Mat. Trans. B, DOI: 10.1007/s11663-010-9458-1.
- R. Chaudhary, B. G. Thomas, S. P. Vanka, Effect of electromagnetic ruler Braking (EMBr) on transient turbulent flow in continuous slab casting using large eddy simulations, Metall. Mat. Trans. B, DOI: 10.1007/s11663-012-9634-6.
- X. Miao, K. Timmel, D. Lucas, Z. Ren, S. Eckert, G. Gerbeth, Effect of an electromagnetic brake on the turbulent melt flow in a continuous-casting mold, Metall. Mat. Trans. B, DOI: 10.1007/s11663-012-9472-0.
- R. Chaudhary, A. F. Shinn, S.P. Vanka, B.G. Thomas, Direct numerical simulations of transverse and spanwise magnetic field effect on turbulent flow in a 2:1 aspect ratio rectangular duct, Computers and Fluids, DOI: 10.1016/j.compfluids.2011.08.002.
- A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi, and T. Fujii., "Control of molten steel flow in continuous casting mold by two static magnetic fields imposed on whole width.", Materials Science and Engineering: A, 1993, vol. 173, pp. 293-297.
- R. Singh, B.G. Thomas, and P. Vanka, "Effects of a Magnetic Field on Turbulent Flow in the Mold Region of a Steel Caster," Metallurgical and Materials Transactions B, in press.
- R. Singh, B.G. Thomas and S.P. Vanka, "Large Eddy Simulations of Effect of Double-Ruler Electromagnetic Field on Transient Flow during Continuous Casting", CCC Report, 2013